The difference between the balance points achieved by KNbO₃ and BaTiO₃ is apparent from Table 4. Both substances have the same differences between long and short K-O(2) or Ba-O(2) bonds (KA and KC of Fig. 4). For BaTiO₃, however, the difference between long and short Ba-O(1) bonds is 0.12 Å, and between long and short O(1)-O(2) edges is 0.04 Å, while for KNbO₃ the relative magnitudes are roughly interchanged, being 0.04 Å and 0.10 Å respectively. This supports the earlier suggestion that the K-O(1) links are already in compression and resistant to further compression. By contrast, either Ba is intrinsically smaller than K or it is more capable of polarizing the O atom to give unequal bonds; again, both causes may cooperate in the observed effect.

We put forward this qualitative treatment in the hope that it may direct attention to aspects of the structures where more rigorous treatment might lead to very profitable results. We wish to express our indebtedness to Dr R. Ueda for his collaboration in the first part of the work. One of us (L.K.) is grateful for a National Science Foundation Science Faculty Fellowship.

References

DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.

- EVANS, H. T. (1961). Acta Cryst. 14, 1019.
- FARQUHAR, M. G. M. & LIPSON, H. (1946). *Proc. Phys. Soc.* 58, 200.
- FORSYTH, J.B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- GELLER, S. (1961). Acta Cryst. 14, 1026.
- MEGAW, H. D. (1962). Acta Cryst. 15, 972.
- SHIRANE, G., DANNER, H. & PEPINSKY, R. (1957). *Phys. Rev.* **105**, 856.

SHIRANE, G., NEWNHAM, R. E. & PEPINSKY, R. (1954). Phys. Rev. 96, 581.

THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293. VOUSDEN, P. (1951). Acta Cryst. 4, 375.

WOOD, E. A. (1951). Acta Cryst. 4, 353.

Acta Cryst. (1967). 22, 648

The Crystal Structure of α-L-Sorbose

BY S.H.KIM AND R.D. ROSENSTEIN

Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 25 July 1966)

The crystal structure of L-sorbose $C_6H_{12}O_6$ has been determined from the three-dimensional sharpened Patterson function by superposition and convolution methods on an IBM 1620 computer. Both photographic and automatic diffractometer data were measured. The former gave a final R index of 8.1%and the latter 5.1%. The space group is $P2_12_12_1$ with four molecules in a unit cell of dimensions $a = 6.535 (\sigma = 0.004)$, $b = 18.069 (\sigma = 0.007)$, $c = 6.305 (\sigma = 0.004)$ Å. The molecules are the α -anomer of the pyranose form. They are associated in the crystal by extensive hydrogen-bonding, which includes all the hydroxyl groups and the ring oxygen atom. The primary alcohol group is disordered, and this leads to an apparent shortening of corresponding C-OH bonds. With the exception of these bonds, the C-C and C-O distances do not differ significantly from the mean values of 1.516 and 1.424 Å respectively.

Introduction

L-Sorbose ($C_6H_{12}O_6$, also called sorbinose) is found in the enzyme hydrolyzate of certain pectins. It is believed to exist in both the ketohexose (I) and the pyranose (II) forms.

As an important intermediate in the commercial synthesis of ascorbic acid, it is most conveniently obtained by the biochemical oxidation of sorbitol (Bertrand, 1898; Wells, Stubbs, Lockwood & Roe, 1937). Hudson (1925) suggested, on the basis of the calculation of the specific rotation, that the common form is the α -anomer of the pyranose (II) which is confirmed by this work. The conventional numbering of the carbon and oxygen atoms used in this paper is shown in Fig.1.

Crystal data

Large transparent crystals were obtained by slow evaporation of an aqueous solution of the compound supplied by Pfanstiehl Laboratories, Inc. The cell parameters were measured at 22 °C with Cu $K\alpha_1$ and Cu $K\alpha_2$ radiation using a Picker 4-angle automatic diffractometer. The crystal density was measured by flotation in a liquid mixture of carbon tetrachloride, chloroform and bromoform.

α-L-Sorbose, C₆H₁₂O₆, M.W. 180·16

Orthorhombic, space group $P2_12_12_1$ from the systematic absences for h00, 0k0 and 00l, when h, k or l = 2n+1.

 $a = 6.535 (\sigma = 0.004) \text{ Å}$ $b = 18.069 (\sigma = 0.007)$ $c = 6.305 (\sigma = 0.004)$ Z = 4 $D_m(23^{\circ}\text{C}) = 1.607 (\sigma = 0.003) \text{ g.cm}^{-3}$ $D_x(22^{\circ}\text{C}) = 1.607 \text{ g.cm}^{-3}$

 $\mu(Cu K\alpha) = 12.85 \text{ cm}^{-1}$.

The corresponding cell parameters reported by Cox, Goodwin & Wagstaff (1935) were 6.51, 18.01 and 6.26 Å respectively.

Experimental

The photographic data were recorded on four layers of multiple-film equi-inclination Weissenberg photographs about both the *a* and *c* axes with Cu $K\alpha$ radiation. The crystals used were approximately cylindrical with mean diameters of 0.30 and 0.25 mm for the *a* and *c* axes respectively. Of the 1030 theoretically possible, 881 symmetry independent reflections (87%) were recorded and estimated visually by comparison with a standard scale. No absorption corrections were made. The intensities were correlated and reduced to the structure amplitudes with an IBM 7090 program (Shiono, 1966*a*) which uses the procedure by Hamilton, Rollett & Sparks (1965).

After the structure was solved, a Picker 4-angle automatic diffractometer became available and a sec-

Fig.1. Identification and numbering of the atoms in the molecule. Dotted ellipsoids represent the disordered atoms.

ond set of data was collected using an approximately square prismatic crystal of $0.3 \times 0.3 \times 0.5$ mm. A $\theta/2\theta$ scanning mode over 2° was used to measure 804 independent reflections with 2θ values below 130° . Background measurements were made at both ends of the 2° scan range of each peak. The same number of equivalent reflections were measured in a different octant of the reciprocal lattice, and the conventional *R* index between the two sets of diffractometer data was 0.06. However, the reference reflections, which were repeated every hour, were significantly more constant for one set and these data were used in the refinement rather than the mean values. No absorption corrections were applied in reducing to structure amplitudes.

Determination of the structure

The orientation of the pyranose ring in the structure was found by inspection of the three-dimensional (E^2-1) Patterson synthesis. From consideration of this orientation, a sharp peak in the Patterson synthesis was chosen, which proved to be a C(6)-O(2) vector (see Fig. 1). With this as the initial vector, the Harker peaks for C(6) and O(2) and their related vector set were identified, and the coordinates of C(6) and O(2)were thereby obtained. The relationship between this vector set and the Harker peaks in two-dimensions is shown in Fig.2. These two atomic positions and their symmetry $(P2_12_12_1)$ related positions were used to calculate an M_8 multiple minimum function (Buerger, 1959). Since the resulting function contained too many peaks for the structure to be uniquely recognized, it was convoluted with the original sharpened Patterson function. The structure was recognized in the resulting function which showed all the atomic peaks except those for hydrogen atoms, and in addition, two spurious peaks. Instead of using Fourier methods, the con-

volution $\dot{PM}(\mathbf{r})$ was computed. The result is

$$\widehat{PM}(\mathbf{r}) = \sum_{\mathbf{r}'} P(\mathbf{r}') \cdot (M(\mathbf{r} + \mathbf{r}')) ,$$

where $P(\mathbf{r})$ represents the value of the Patterson function at point **r**, and $M(\mathbf{r})$ the value of the M_8 function at r, $\widehat{PM}(\mathbf{r})$ being calculated at various points r in the cell. Only positive values of the two functions were included in the summation. All the above calculations were performed with an IBM 1620 program prepared by Corfield (1965). The first structure factor calculation for six carbon and six oxygen atoms gave an R value of 0.33 for all observed reflections. These parameters were refined isotropically with one scale factor using the Busing-Martin-Levy (1962) full-matrix leastsquares IBM 7090 program until R = 0.18. The threedimensional Fourier and difference Fourier syntheses then revealed an additional peak of about 2.5 e at an alternate position for the oxygen atom of the primary alcohol group, O(1). In addition, the peak on the Fourier synthesis at the original position for O(1) was about 25% lower than for the other oxygen atoms.

Interchanging the coordinates for O(1), and recalculating the Fourier syntheses did not eliminate the original peak, and therefore it was assumed that O(1) was disordered over these two stereochemically feasible positions. With fixed occupancy factor of 0.5 for O(1) and O(1'), the *R* value dropped from 0.18 to 0.13 in one cycle of the least-squares isotropic refinement. The significance test of Hamilton (1965) showed that the hypothesis that O(1) is ordered could be rejected at the significance level of 0.5%.

Refinement of the structure

The refinement of the positional parameters, the anisotropic thermal parameters, the occupancy factors for O(1) and O(1'), and one scale factor was carried out by Shiono's (1966b) version of the Busing, Martin & Levy (1962) full-matrix least-squares IBM 7090 program. All the unobserved reflections and four very strong low-order reflections were excluded from both the photographic and diffractometer data. Cruickshank's (1961) weighting scheme was used for both sets of data. The final R values of 0.081 and 0.051 were obtained for the photographic and diffractometer data respectively. Only those hydrogen atoms that are bonded to the ring carbon atoms were located on the difference synthesis using the photographic data, but with the diffractometer data, all the hydrogen atoms, except those on the disordered O(1') and C(1), were clearly revealed at reasonable locations with respect to the carbon and oxygen atoms. Their positional parameters were not refined and they were assigned the

Fig.2. (a) Two independent atoms in pgg. (b) Their corresponding Patterson vectors.

Table 1. Fractional atomic coordinates in α -L-sorbose

The estimated standard deviations are given in parentheses, and refer to the last decimal positions of respective values.

	x	У	z	Occupancy		x	у	z	Occupancy
C(1)	0.5335 (7)	0.1629 (3)	0.5202 (7)	1.0	H(C1-1)	0.628	0.194	0.408	1.0
C(2)	0.3938 (7)	0.1204(2)	0.3722(6)	1.0	*H(C1-2)	0.609	0.132	0.625	0.37
C(3)	0.3341 (5)	0.1662(2)	0.1782 (6)	1.0	*H(C1-2')	0.473	0.208	0.589	0.63
C(4)	0.1761 (6)	0.1274 (2)	0.0430 (6)	1.0	H(C3)	0.268	0.213	0.234	1.0
C(5)	<i>−</i> 0.0059 (6)	0.1049 (2)	0.1771 (6)	1.0	H(C4)	0.260	0.080	-0.023	1.0
C(6)	0.0633 (7)	0.0622 (2)	0.3707 (8)	1.0	H(C5)	-0.112	0.155	0.220	1.0
O(1)	0.6321 (11)	0.1218 (3)	0.6580 (9)	0.63 (2)	H(C6-1)	0.130	0.013	0.290	1.0
O(1')	0.4584 (15)	0.2188 (4)	0.6051 (13)	0.37 (1)	H(C6-2)	- 0.045	0.040	0.470	1.0
O(2)	0.4899 (4)	0.0553 (1)	0.2973 (5)	1.0	H(O1)	0.620	0.140	0.825	1.0
O(3)	0.5111 (5)	0.1809 (1)	0.0518 (4)	1.0	H(O2)	0.510	0.010	0.420	1.0
O(4)	0.1132 (5)	0.1761 (1)	-0.1229 (4)	1.0	H(O3)	0.525	0.240	0.080	1.0
O(5)	-0·1367 (4)	0.0592 (1)	0.0521 (5)	1.0	H(O4)	0.110	0.152	-0.282	1.0
O(6)	0.2154 (4)	0.1022 (2)	0.4898 (4)	1.0	H(O5)	-0.292	0.064	0.118	1.0

* The coordinates of these two hydrogen atoms are calculated from the geometry.

Table 2. Anisotropic thermal parameters in α -L-sorbose

The temperature factor expression used was

 $\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right]$

The estimated standard deviations in parentheses refer to the last decimal position of respective values.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	0.0170 (11)	0.0047 (2)	0.0161 (10)	-0.0016(4)	0.0010 (11)	-0.0019(4)
C(2)	0.0158 (9)	0·0021 (1)	0·0161 (9)	-0.0009(3)	0.0042(9)	0.0003 (3)
C(3)	0.0143 (9)	0·0018 (1)	0.0136 (9)	0.0000 (2)	0.0051 (8)	-0.0008(3)
C(4)	0.0163 (9)	0.0015 (1)	0.0149 (9)	0.0004 (2)	0.0004 (8)	-0.0003 (2)
C(5)	0.0142 (8)	0·0017 (1)	0.0178 (9)	0.0002(3)	0.0010(9)	-0.0009(3)
C(6)	0.0166(9)	0.0028(1)	0.0220(12)	-0.0014(3)	-0.0027 (10)	0.0016 (3)
O(1)	0.0295 (17)	0.0045(2)	0.0186 (14)	0.0022 (6)	-0.0078(16)	-0.0004(5)
O(1')	0.0227(25)	0.0019(2)	0.0189 (21)	-0.0003 (6)	0.0096 (22)	-0.0015(6)
O(2)	0.0176 (6)	0.0021 (1)	0.0177 (7)	0.0006(2)	-0.0022(7)	0.0002(2)
O(3)	0.0176 (7)	0.0023 (1)	0.0180 (7)	-0.0014(2)	0.0077 (7)	-0.0004(2)
O(4)	0.0248(8)	0.0021(1)	0.0138 (6)	0.0022(2)	-0.0014 (7)	0.0003(2)
O(5)	0.0150 (6)	0·0025 (1)	0.0257(9)	-0.0001(2)	-0.0032(7)	-0.0030(2)
0(6)	0.0165 (7)	0.0035 (1)	0.0121(6)	-0.0020(2)	0.0024(6)	0.0000(2)

Table 3. Observed and calculated structure factors

Columns are: Index, $|F_{obs}|$, $|F_{cal}|$, A_{cal} , B_{cal} . (* for unobserved reflections; † for reflections excluded in the least-squares refinement)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{bmatrix} L = & 0 & H = \\ 68 & 74 & 68 & 44 \\ 647 + 1086 & 10. \\ 48 & 54 & 67 & 61 \\ 393 & 39 & 33 & 182 \\ 101 & 199 & 132 \\ 244 & 251 & 22 \\ 62 & 62 & 62 & 62 \\ 133 & 139 & 446 + 607 & 61 \\ 213 & 207 & 446 + 607 & 61 \\ 213 & 207 & 446 + 607 & 61 \\ 213 & 207 & 446 + 607 & 61 \\ 213 & 207 & 446 + 607 & 61 \\ 173 & 161 & 11 \\ 390 & 431 & 58 & 42 \\ 122 & 113 & 11 \\ 158 & 122 & 113 \\ 71 & 73 & 161 & 11 \\ 390 & 431 & 58 & 42 \\ 122 & 113 & 11 & 11 \\ 158 & 123 & 110 & 101 \\ 160 & 114 & 123 \\ 171 & 78 & 83 & 116 \\ 160 & 114 & 117 \\ 173 & 803 & 116 \\ 161 & 101 & 101 & 101 \\ 78 & 83 & 116 & 116 \\ 173 & 166 & 164 \\ 174 & 100 & 99 & 100 & 116 \\ 161 & 101 & 101 & 101 \\ 73 & 66 & 51 & 316 \\ 154 & 1400 & 140 \\ 173 & 166 & 166 & 166 \\ 133 & 306 & 31 & 32 \\ 199 & 107 & 123 & 129 & 128 \\ 153 & 56 & 56 & 55 \\ 158 & 151 & 36 & 55 \\ 158 & 151 & 36 & 55 \\ 158 & 151 & 36 & 55 \\ 158 & 151 & 324 & 22 \\ 191 & 172 & 173 & 120 \\ 44 & 46 & 44 \\ 77 & 779 & 22 & 128 \\ 123 & 120 & 44 & 46 & 47 \\ 777 & 79 & 22 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 144 & 466 & 47 \\ 777 & 79 & 22 & 128 \\ 123 & 120 & 144 & 466 & 47 \\ 777 & 79 & 22 & 128 \\ 123 & 120 & 144 & 466 & 47 \\ 777 & 79 & 25 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 128 & 128 \\ 123 & 120 & 144 & 466 & 47 \\ 777 & 79 & 25 & 128 & 138 \\ 144 & 466 & 46 & 47 \\ 777 & 79 & 25 & 128 & 138 \\ 154 & 152 & 128 & 138 & 128 \\ 155 & 156 & 156 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 151 & 158 \\ 158 & 151 & 158 & 158 & 158 \\ 158 & 151 & 158 & 158 & $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 7 & 8 & 9 \\ 1011123 & 145677891011123 \\ 112345677891011123 \\ 1123456778910111234567789101112345677891011123456778910111234567789101112345677891011123456778910111234567789101112345677891011123456778910111234567789101112345677891011123456778910111234567789101112345678910111234556789000000000000000000000000000000000000$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 0 & - & 0 \\ 1 & 0 \\ 2 & 3 \\ 2 & 5 \\ - & 0 \\ 2 & 3 \\ - & 0 \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 2 \\ - & 3 \\ - & 0 \\ - & 2 \\ - & 0 \\ - & 2 \\ - & 0 \\ - & 2 \\ - & 0 \\ - & 2 \\ - & 0 \\ - $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\1\\1\\2\\3\\4\\5\\6\\7\\8\\1\\1\\2\\3\\1\\2\\3\\1\\1\\2\\3\\1\\2\\2\\1\\2\\1\\2\\3\\1\\2\\2\\3\\1\\2\\2\\2\\2$
198 309 1634 182269 472 200 1017 1455 471 200 1017 1455 471 1017 1455 471 1017 1455 471 1017 1455 1810 1735 1800 1745 1800 1745 1800 1745 1800 1745 1800 1745 1810 1915 195 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 1745 1810 195 1810 1745 1810 195 195 195 195 195 195 195 195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
01234567890112345678901234567890112345678901123456789012345678901234567890123456789011234567890123456789012345678901123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123459000000000000000000000000000000000000
1476 1476 1476 1476 1476 1476 1477
$\begin{array}{c} 1320\\ 3204033132114893061142\\ 1110124201567413721898761125541472431121212121212121212121212121212121212$
$\begin{smallmatrix} 2&23&74&2-3\\ 2&23&74&2-3\\ 1&1&5&7&7\\ 1&1&2&2&2&3\\ 1&1&5&7&7&5\\ 1&1&2&2&2&2&3\\ 1&1&1&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&1&2&2&2&2&2\\ 1&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2&2\\ 1&2&2&2&2&2&2&2&2&2\\ 1&2&2$
$\begin{array}{c} 32-8\\ 28\\ 7-2\\ 135-4\\ 128\\ 7-2\\ 135-4\\ 127\\ 122-1\\ 135-4\\ 127\\ 122-1\\ 135-4\\ 103\\ 777\\ 180-1-8\\ 103\\ 277\\ 785\\ 137-7\\ 180-1-8\\ 103\\ 277\\ 785\\ 137-7\\ 180-1-8\\ 103\\ 277\\ 785\\ 137-7\\ 180-1-8\\ 103\\ 272-7\\ 11-1\\ 146\\ 082\\ 171-1\\ 144\\ 170-2\\ 231\\ 137-8\\ 139-1\\ 127-7\\ 11-1\\ 144\\ 170-2\\ 231\\ 137-8\\ 137-3\\ 103-1\\ 11-1\\ 144\\ 170-2\\ 231\\ 137-8\\ 137-3\\ 106-8\\ 144-1\\ 11-1\\ 144\\ 170-2\\ 231\\ 137-3\\ 137-3\\ 106-8\\ 144-1\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 231\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 11-1\\ 144\\ 170-2\\ 122\\ 137-1\\ 122\\ 12-$
$123456789011 \\ 012345 \\ 123456789011234567890112345678901123456789011234 \\ 6789011234 \\ 6789011123456789011234567890112345678901123456789011234 \\ 123456789011234567890011234567890112345678901123456789011234567890112345678901123456789011234567890112345678901123456789011234567890112345678901123456789000000000000000000000000000000000000$
$ \begin{array}{c} 28\\ 863\\ 738\\ 85\\ 35\\ 16\\ 22\\ 510\\ 51\\ 757\\ 19\\ 757\\ 19\\ 757\\ 19\\ 757\\ 19\\ 757\\ 19\\ 757\\ 12\\ 13\\ 56\\ 8\\ 12\\ 13\\ 10\\ 12\\ 12\\ 10\\ 12\\ 12\\ 10\\ 12\\ 12\\ 10\\ 12\\ 12\\ 10\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 5-3\\ 238-9\\ -238-9\\ -29-2\\ 0\\ 14\\ 10\\ 13\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3 (cont.)

2	195	202	12-	201-	7	99	93	48	79-	4	51	51	51	5-	0	69	67	0	67	0	21	6	6-	0
3	189	191	158	106	8	36	27	15	21-	5	23	28	25-	12-	1	73	78	78-	6	1	134	139	91-	105
4	75	72	3-	72-	9	71	72	68	23	6	44	48	19-	44-	2	100	96	95-	9	z	40	44	44-	0
5	63	60	21-	56	10	87	83	54	63	7	33	32	31	6-	3	96	91	73-	54-	3	143	150	104-	107-
6	107	103	48	91	11	113	112	9-	111	8	22+	16	4	15-	4	53	60	16	58-	4	40	40	1-	39
7	110	111	104	37	12	55	56	47-	29	9	14*	14	6-	13-	5	69	76	60	46-	5	24	24	4	24-
8	38	41	41-	2-	13	55	54	46-	28	10	10	1	0	1-	6	72	72	72-	5	6	75	81	50	63-
9	24	21	11-	18	14	69	69	25	64-	111	46	42	23-	35	7	125	130	121	47-	7	26	25	3	24
10	40	37	36-	1-	15	24	17	2	17-		L	= 6	H= 4		8	75	77	62-	46	8	70	67	7	67-
11	61	59	54-	23-	16	62	63	48	41-	0	26	31	31	0	9	26	28	11-	25	9	17+	15	8	13-
12	30	25	25	1	17	35	34	7-	33	1	72	72	7-	72-	10	81	81	79	15~	10	65	69	4	69
13	18	16	13-	8	18	5+	46	0	46	2	49	47	27	39-	11	68	63	15-	61	11	27	27	15	22
14	39	.38	3	38		L	= 2	H= 4		3	35	33	33	0	12	59+	54	41	34-	12	5	20	20-	5-
15	91	89	89-	9	0	42	48	48	0	4	24	18	16-	7-	13	26	21	21	4		L=	3	H= 6	
16	5 e	31	17	25	1	62	61	60	5-	5	40+	33	23	23	14	3	3	2-	1	0	17	12	0	12-
	L	≈ 5	н= 3		2	173	171	171-	7-	6	5	60	36-	47-	1	L=	4	H= 5		1	84	85	85-	2-
0	214	223	0	223-	3	211	213	63	203-		L	≠ 0	H= 5		0	31	25	25-	0	2	7	11	6-	9
1	151	158	155	34	4	95	96	84-	45	1	75	85	0	85	1	63	66	65	14-	3	31+	24	22	8-
2	80	84	83-	11	5	96	95	47-	82	2	17	12	0	12-	2	43	37	36-	10	4	55	59	56	16
3	114	112	63-	93	6	164	164	163	18	3	188	188	0	188	3	73	76	76	1	5	29	28	4	28
4	83	78	29-	72	7	128	120	112-	42	4	110	115	0	115	4	45	48	44-	17-	6	12	4	4-	0
5	58	61	34-	51	8	58	62	40	47-	5	105	112	0	112-	5	49	49	49	2-	7	47	49	45	19
6	44	48	46	16-	9	68	68	18	65	6	322	331	0	331-	6	36	28	27	3	8	33	29	10-	27-
7	49	47	14-	44-	10	87	92	85	34	7	202	201	0	201-	7	27	24	20	13-	9	22	20	20	0
8	78	17	50	59	11	136	137	76	114	8	203+	199	0	199-	8	71	69	68	6-	10	20	22	10	20-
9	69	75	75-	10	12	103	104	93	46-	9	8	13	0	13	9	54	50	49-	11		L#	4	H= 6	
10	38	39	36-	14-	13	63	58	0	58-	10	236	243	0	243	10	45	45	39	22-	0	68.	58	58	0
11	39	38	32	20	14	66	67	63-	25-	111	81	82	0	82-	111	54	54	Ó	54	i	61	70	63-	30
12	19	11	10	5	15	58	57	11-	55-	12	96	95	0	95		L=	5	H= 5		2	56	52	4	51-
13	56	60	22-	56-	16	59	57	44-	35	13	19+	15	0	15	0	45	41	0	41-	3	14	13	9-	9
	L	= 6	H≃ 3		17	27	23	0	23	14	6	9	0	9-	1	42	40	37	15-	4	25+	19	18-	6
0	52	55	55-	0		La	= 3	H= 4		15	72	66	0	66	2	23	21	4	20	5	40+	41	39	9
1	56	58	45	36-	0	52	55	0	55-	16	30	30	0	30	3	23+	26	15-	21-	6	18+	18	15	10
2	49	49	6	49	1	34	31	5-	30-		L	= 1	H≖ 5		4	32	36	35	9-	7	5	23	4-	22-
3	46	49	30-	39	2	105	98	29	94	0	21	15	0	15-	5	14+	12	10	7		Lr	: 0	H= 7	
4	47	46	42	20-	3	186	190	64-	179-	1	98	98	85-	47	6	34+	32	30-	11-	1	6	8	0	8
5	86	90	80-	42	4	193	195	192	37	2	101	105	81	67-	7	10	2	0	2	Ž	56	60	ō	60-
6	16	9	5-	7-	5	53	56	50-	23	3	118	120	114	38-	8	3	36	9	35	3	47	43	ō	43
7	43	42	42	3-	6	141	147	8	146-	4	105	99	45-	87-		L=	0	H= 6		4	20	18	ō	18
8	16	12	1	12	7	244	249	106	226	5	117	119	14-	118-	0	156	176	176	0	5	21	17	0	17-
9	43	43	2-	43-	8	41	30	27-	12-	6	46	40	40-	5	1	72	65	65-	0	6	24 •	19	0	19-
10	3+	20	20-	4	9	61	60	49	35-	7	48	49	19	45-	2	21	13	13-	0	7	28	25	0	25-
	L.	≈ 0	H= 4		10	95	102	79	63	8	122	125	55-	112	3	137	131	131-	0	8	29	28	0	28-
0	42	45	45	0	11	107	100	3	100-	9	36	38	20	33	4	63	53	53-	0	9	5	0	0	0
1	6*	13	13-	0.	12	91	100	100-	8-	10	104	103	22	101	5	16	2	2	0		L=	: 1	H≂ 7	
2	14*	6	6	0	13	29	25	24-	8	11	97	99	92-	35	6	49	47	47	0	0	27	31	0	31-
٤	87	80	80	0	14	65	66	66-	1	12	48	49	49	0	7	27+	24	24	0	1	90	94	93	15-
4	49.	62	62	0	15	18	11	11-	0	13	59	59	40	43	8	45	47	47-	0	2	48	46	46-	2-
2	13	13	13	0	16	5.	1	0	1	14	47	44	0	44-	9	7	1	1-	0	3	32	32	31	4-
•	100	.97	97-	0		L*	= 4	H≈ 4		15	49+	45	40	20	10	24 •	20	20-	0	4	24	25	3-	25-
	219	216	276-	0	0.	184	183	183	0	16	5	27	16-	22-	11	36	35	35	0	5	83	88	87-	5
8		10	70-	0	2	21	32	26-	18		L:	= 2	H≈ 5		12	14	3	3-	0	6	58+	60	56	21-
	58	57	57	0	3	113	112	74	84-	0	29	29	29	0	13	21	18	18	0	7	74	77	48-	59-
10	104	98	98	0	4	100	103	98-	30-	1	35	29	1	29		L=	1	H= 6		8	66	70	23-	66
11	217	228	228	0	2	109	105	20	103	2	28	24	8	22	0	39	40	0	40-	9	3+	5	4	2
12	45	42	45	0	6	51	54	52	15-	3	61	69	55-	42	1	104	117	60-	100		۲L=	: 2	H= 7	
13	60	64	64-	0		19	22	8	20	4	103	102	35-	· 96	2	90	100	97-	21	0	56	54	54-	0
14	36	40	40-	0	8	26	31	26-	17	5	49	51	38-	33-	3	98	99	65	75	1	14	12	5-	10-
15	17	22	22-	0	9	91	95	22-	92-	6	40	41	25	33-	4	80	80	1	80	2	30	33	29	15-
16	68	70	70-	0	10	39	32	18	27	7	69	74	3-	74-	5	25	25	5	25-	3	77	82	78-	26
17	28	25	25	0	11	27	27	20-	19	8	33	36	33-	14-	6	28	24	16-	18	4	52 •	57	39	41
18	13+	_ 0		0	12	19	21	. 9	18-	9	18	9	8	2- [7	27	17	0	17-	5	80+	81	74-	34-
~	^L	* 1	H= 4	101	13	10	13	11	6	10	63	64	31-	56	8	44	43	29-	32 -	6	49+	56	30-	47
	114	104	15	104	14	· · · .	. (?		4-		40	36	13	33	. 4	23	17	4	17-	7	5	15	14	4-
1	162	160	10-	20-		L =	- ?	n= 4		12	00	68	22	44-	10	70	67	46	49-	Ι.	L=	3	H= 7	
4	120	122	140-	122-		67	-4 6 0		24-	15	22	23	0	23	11	26+	23	0	23	0	10+	5	0	5
2	43	123	43-	7-	1 2	50	50	34	20-	15	23	27	9-	23-	12	39	40	11-	38-	1	21	22	22-	3-
2	138	111	68-	114-	1	70	77	43-	64-	15	~		10	12-	13	2	14		3-	Z	5.	49	35-	34
2	120	47	36-	30-	1	14		43-	04-		r.	- 3	n¥)	ļ		ſ.	2	H= 6		3	5+	16	2	16-
•			-0-	30-																				

same thermal parameters as those of the carbon or oxygen atoms to which they are bonded. The final positional and thermal parameters with occupancy factors for the disordered atoms for the diffractometer data are given in Tables 1 and 2, and the corresponding structure factors are given in Table 3. The principal axes of the thermal ellipsoids are given in Table 4. No significant differences (*i.e.* > 3σ) were found between these coordinates and those from the photographic data. The average estimated standard deviations of atomic position for carbon atoms are 0.006 and 0.004 Å, and for oxygen atoms, 0.004 and 0.003 Å, for the photographic and diffractometer data respectively.

Description of the structure

The conformation of the molecule and the numbering of atoms are shown in Fig.1. The molecule is the α -

anomer with a chair-form pyranose ring and the substituent hydroxyl groups have the conformation 2a3e4e5e. The bond lengths and valence angles in the molecule are given in Table 5. The C-C bond lengths range from 1.511 to 1.527 Å and none differ from the mean value of 1.516 Å by more than 2σ . The C-OH bond lengths, excluding C(1)-O(1)H and C(1)-O(1')H, range from 1.415 to 1.429 Å and all are within 2σ of the mean value of 1.424 Å. Although the C(2)–O(2)H bond is shorter by 0.01 Å than the mean value, the difference is not significant, in contrast to the difference of 0.03-0.04 Å observed at the significance level in the corresponding C(1)-O(1)H bond in the aldopyranose sugars, α -D-glucose (Brown & Levy, 1965) and β -D,Larabinose (Kim & Jeffrey, 1967). The ring C-O distances are 1.420 and 1.440 Å, and again this difference of 0.02 Å is not statistically significant, in contrast to the apparently significant differences of 0.03 Å observed in the glucopyranose and fructofuranose rings in sucrose (Brown & Levy, 1963) (see Table 6).

The carbon valence angles inside the ring range from 109.5 to 112.1° with the mean value of 110.9° and those outside the ring range from 107.2 to 111.9° with the mean value of 109.6° . The valence angle of the ring oxygen atom is close to 115° as is commonly observed in pyranose rings (*cf.* Jeffrey & Rosenstein, 1964). The conformation angles fall well within the range observed in other sugars (see Table 6 of Kim & Jeffrey, 1967).

The molecules are associated in the crystal by a very extensive hydrogen bonding, as shown in Fig. 3, with the distances and angles given in Table 7. All the hydroxyl groups participate in the hydrogen bonding, both as donor and as acceptor, except the disordered atom O(1), O(1'), which is a donor only. The ring oxygen atom O(6) is also involved as a hydrogen-bond acceptor. The hydrogen bonding forms two unconnected systems. One is a continuous chain spiraling throughout the structure in the direction of the *c* axis, *i.e.* \rightarrow O(2, *c*) \rightarrow O(5, *b*) \rightarrow O(2, *h*) \rightarrow O(5, *e*) \rightarrow O(2) $\cdots\cdots$ (where \rightarrow indicates the donor direction, and the small letter refers to the symmetry operations given in Table 7). The other one consists of discontinuous fragments involving three hydrogen bonds, *i.e.* O(1, *c*) or O(1', *c*) \rightarrow O(3) \rightarrow O(4, *d*) \rightarrow O(6, *i*). These three hydrogen bonds lie approximately in one plane.

Table 4. Principal axes of thermal ellipsoids

The root mean square displacement U_i corresponds to the *i*th principal axis of the ellipsoid and θ_{ia} , θ_{ib} , θ_{ic} are angles between the *i*th axis and the crystallographic axes a, b, c.

C(1)	<i>i</i> 1 2 3	<i>Bi</i> * 2·369 Å ² 2·740 6·508	U _i † 0·1732 (0·1749) Å 0·1863 (0·2100) 0·2871 (0·2811)	θ _{ia} 89·9° 167·7 102·3	$ heta_{ib} \\ 77.3^{\circ} \\ 102.0 \\ 17.6 \\ ext{}$	$ extsf{0}{\theta_{ic}} \\ 12 \cdot 7^{\circ} \\ 87 \cdot 2 \\ 102 \cdot 4 \\ extsf{0}{\theta_{ic}} \\ extsf{0}{\theta_$
C(2)	1	1·774	0·1499 (0·1523)	48·9	66·8	130·0
	2	2·767	0·1872 (0·1869)	90·2	148·4	121·6
	3	3·413	0·2079 (0·2045)	138·9	69·7	123·9
C(3)	1	1·365	0·1315 (0·1408)	126·1	73·1	41·1
	2	2·328	0·1717 (0·1663)	112·3	157·5	86·6
	3	3·225	0·2021 (0·2070)	44·5	104·5	49·1
C(4)	1	1·824	0·1520 (0·1583)	101·3	18·8	75·2
	2	2·404	0·1745 (0·1700)	88·1	74·5	164·4
	3	2·814	0·1888 (0·2080)	11·4	79·7	85·2
C(5)	1	1∙966	0·1578 (0·1584)	111·4	36·5	62·0
	2	2∙488	0·1775 (0·1938)	156·7	113·2	92·2
	3	3∙074	0·1973 (0·2058)	98·8	63·6	151·9
C(6)	1	2·476	0·1771 (0·1663)	26·4	64·1	85·4
	2	2·893	0·1914 (0·1971)	78·5	123·7	36·1
	3	4·689	0·2437 (0·2434)	113·4	44·9	54·3
O(1)	1	2·322	0·1715 (0·1452)	63·3	94·9	27·3
	2	4·743	0·2452 (0·2576)	50·5	131·9	112·7
	3	6·701	0·2924 (0·2830)	51·1	42·4	104·2
O(1′)	1	1·539	0·1396 (0·1476)	118·6	62·0	42·1
	2	2·656	0·1834 (0·2069)	115·8	149·4	74·7
	3	5·195	0·2565 (0·2234)	40·3	101·4	52·0
O(2)	1	2·358	0·1728 (0·1767)	125·3	54·2	124·7
	2	2·838	0·1896 (0·1977)	96·5	138·4	130·9
	3	3·344	0·2058 (0·2185)	36·1	71·7	119·9
O(3)	1	1∙581	0·1415 (0·1595)	45·4	76·6	132·3
	2	2∙871	0·1907 (0·1928)	96·9	153·2	115·7
	3	4∙495	0·2376 (0·2420)	134·6	67·3	126·8
O(4)	1	1·951	0·1572 (0·1637)	110·2	52·4	135·5
	2	2·415	0·1749 (0·1904)	73·5	131·0	134·4
	3	4·766	0·2457 (0·2371)	26·6	63·7	93·1
O(5)	1	2·001	0·1592 (0·1779)	55·4	52·2	56·7
	2	2·761	0·1870 (0·1855)	36·0	122·4	103·8
	3	5·170	0·2559 (0·2531)	81·5	54·6	143·2
O(6)	1	1·732	0·1481 (0·1655)	116·3	98·0	27·6
	2	2·607	0·1817 (0·1903)	143·6	112·0	117·4
	3	4·998	0·2516 (0·2581)	113·3	23·6	93·1

* $B_i = 8\pi^2 U_i^2$.

 \dagger The values in parentheses are U_i values calculated from the photographic data.

The disordered atom

The observation that the O(1) hydroxyl group is disordered is unusual in a hydrogen-bonded structure. Even more unexpected were the unequal occupancy factors. Therefore alternative interpretations were considered, although they were inherently less plausible than disorder.

The only possibility in accord with the observed density and occupancy factors would be a 40% impurity of a hitherto unknown oxidation product of sorbose, the aldehyde (III). Moreover, if the aldehyde oxygen were in position O(1'), both the abnormally short C-O distance and the non-appearance of the hydroxyl hydrogen atom would have a natural explanation. However, the infrared spectra of the original

crystalline sample and of the recrystallized material showed no indication of the characteristic absorption

associated with the aldehyde (-C=O) group in carbohydrate compounds (Neely, 1957; Spedding, 1964). Hence, at the concentration assumed, this suggestion is untenable.

Table 5. Bond lengths and angles

The estimated standard deviations are given in parentheses, and refer to the last decimal positions of respective values.

						Angle
i	j	D(ij)	i	i	k	(ijk̃)
C(1)	C(2)	1·515 (6) Å	C(2)	C(1)	O(1)	114.7 (5)°
C(2)	C(3)	1.527 (5)	C(2)	C(1)	O(1')	116.0 (5)
C(3)	C(4)	1.511 (5)	O(1)	C(1)	O (1')	111.6 (6)
C(4)	C(5)	1.515 (5)	$\mathbf{C}(1)$	C(2)	C(3)	111.9 (3)
C(5)	C(6)	1.513 (6)	$\mathbf{C}(1)$	C(2)	O(2)	111.1 (3)
C(6)	O(6)	1.440 (5)	C(1)	C(2)	O(6)	106·9 (3)
O(6)	C(2)	1.420 (5)	C(3)	C(2)	O(2)	107·2 (3)
C(1)	O(1)	1.312 (10)*	C(3)	C(2)	O(6)	109·5 (3)
C(1)	O(1')	1.244 (8)*	O(2)	C(2)	O(6)	110·2 (3)
C(2)	O(2)	1.415 (5)	C(2)	C(3)	C(4)	112.1(3)
C(3)	O(3)	1.429 (5)	C(2)	C(3)	O(3)	109.9 (3)
C(4)	O(4)	1.427 (5)	C(4)	C(3)	O(3)	108.9 (3)
C(5)	O(5)	1.426 (5)	C(3)	C(4)	C(5)	110.3 (3)
			C(3)	C(4)	O(4)	108.9 (3)
			C(5)	C(4)	O(4)	110.4 (3)
			C(4)	C(5)	C(6)	110.7 (3)
			C(4)	C(5)	O(5)	108.5 (3)
			C(6)	C(5)	O(5)	109.2 (3)
			C(5)	C(6)	O(6)	111.8 (3)
			C(6)	O(6)	C(2)	114.2 (3)

* Apparent distances due to disordered atom O(1).

Bond lengths (Å)

37-1----

Table 6. Bond lengths and angles in some pyranose carbohydrates

Donu longuis (A)								
• • • •	C-C		C-OH*	k				
	Range	Mean	Range	Mean	C–O (ring)	C(1)-OH	⊿†	Reference
Sucrose	1.520 - 1.534	1.525	1.413 - 1.423	1.418	1.408, 1.436			Brown & Levy (1963)
α-D-Glucose	1.511 – 1.535	1.524	1.414 - 1.426	1.418	1.427, 1.428	1.391	10σ	Brown & Levy (1965)
β -D-Glucose	1.512 - 1.544	1.527	1.442 - 1.450	1.446	1.437, 1.455	1.404	4σ	Ferrier (1963)
L-Sorbose	1.511 - 1.527	1.516	1.415-1.429	1.424	1.420, 1.440			This paper
D, L-Arabinose	1.518 - 1.535	1.528	1.415 - 1.428	1.423	1.438, 1.444	1.392	7σ	Kim & Jeffrey (1967)
β-Arabinose	1.523 - 1.554	1.535	1.426 - 1.454	1.437	1.421, 1.440	1.382	4σ	Hordvik (1961)

* Excluding short C(1)-OH, where observed. ..

(0)

† Δ is the difference between average C-OH and C(1)-OH distances and σ is the estimated standard deviation of the difference.

valence and conform	ation angles (*)					
	C (inside the ring)*		C (outside the	ring)*		
	Range	Mean	Range	Mean	O (ring)	Reference
Sucrose	-		•			
(pyranose part)	$108 \cdot 2 - 111 \cdot 2$	110.3	$106 \cdot 1 - 112 \cdot 5$	109.8	116-1	Brown & Levy (1963)
α-D-Glucose	108.7 - 111.1	110-2	108.3 - 112.3	110-3	113.7	Brown & Levy (1965) (private communication)
β -D-Glucose	107·2 – 110·9	109.4	$107 \cdot 3 - 115 \cdot 5$	109.2	113-1	Ferrier (1963)
L-Sorbose	109.5-112.1	110-9	107·2 – 111·9	109.6	114.2	This paper
D, L-Arabinose	109.0 - 111.4	108.3	108.3-112.9	111.3	113-2	Kim & Jeffrey (1967)
β -Arabinose	107.1 - 111.9	109.5	107.3 - 113.1	109-9	112.7	Hordvik (1961)

* Angles involving hydrogen atoms are excluded.

Fig. 3. The crystal structure viewed along the a axis. Dotted lines represent hydrogen bonds. Shaded circles represent ring oxygen atoms. Cross-hatched circles represent the disordered hydroxyl oxygen atoms. Numbers and alphabetic symbols are identification numbers and symmetry codes of oxygen atoms respectively.

In fact, the characteristic absorptions of the keto

$$(>C=O)$$
 and carboxy $\begin{pmatrix} O \\ -C \\ O \end{pmatrix}$ groups were also

absent. This in itself would exclude the hypothetical acid (IV) without even taking the density into consideration. In addition, the agreement could not be improved by least squares below R=0.15 without reducing the occupancy of both O(1) and O(1').

The density and occupancy also rule out the possibility of a disordered partial water of hydration,* but even more convincing is the behavior of the positional parameters during the course of the refinement. The partial oxygen atoms spontaneously appeared close to the carbon atom C(1) in $(\varrho_o - \varrho_c)$ syntheses and neither oxygen atom showed any tendency during least-squares cycles to shift away to a distance more in conformity with a hydrogen bond or a van der Waals contact.

It appears therefore that the disorder is real and the environment of O(1) and O(1') is such as to be consistent with two alternate hydrogen-bonding schemes, one of which has energetically more favorable stereo-

* Suggested by a referee. It is conceivable that a hydrate could be prepared at low temperatures.

Table 7. Intermolecular distances and angles in α-L-sorbose (i) Hydrogen-bonds except those involving the disordered atoms O(1) and O(1').

i	j	k	D(jk)	Angle <i>ijk</i>			
C(2)	O(2)	$O(5, a)^*$	2·890 Å	122·2°			
C(3)	O(3)	O(4, d)	2.705	106.5			
C(4)	O(4)	O(6, c)	2.863	105.7			
C(5, e)	O(5, e)	O(2)	2.890	103.0			
* See symmetry code (iv) below.							

(ii) Non-bonded distance less than 3.3 Å between carbon and oxygen atoms excluding the disordered atoms.

$$i j D(ij)$$

O(3) O(5, e) 3.183 Å

(iii) Distances and angles related to the disordered atom.

.

i	k	jk	Angle ijk	Remarks
O(1, c)	O(3)	2·815 Å	103·4°	Hydrogen bond [†]
O(1, c)	O(5, e)	3.121	166.0	Non-bonded contact
O(1', c)	O(3)	2.919	100.2	‡
O(1', c)	O(4, <i>e</i>)	2.937	109.9	‡
	j O(1, c) O(1, c) O(1', c) O(1', c)	$\begin{array}{cccc} j & k \\ O(1, c) & O(3) \\ O(1, c) & O(5, e) \\ O(1', c) & O(3) \\ O(1', c) & O(4, e) \end{array}$	$\begin{array}{cccccccc} j & k & jk \\ O(1, c) & O(3) & 2.815 \text{ Å} \\ O(1, c) & O(5, e) & 3.121 \\ O(1', c) & O(3) & 2.919 \\ O(1', c) & O(4, e) & 2.937 \end{array}$	jkjkijk $O(1, c)$ $O(3)$ 2.815 Å 103.4° $O(1, c)$ $O(5, e)$ 3.121 166.0 $O(1', c)$ $O(3)$ 2.919 100.2 $O(1', c)$ $O(4, e)$ 2.937 109.9

† H(O1) was found along the bond from the difference synthesis.

 \ddagger H(O1') was not found, probably owing to the low occupancy of the atom.

(iv) Symmetry code

	x	У	Z
а	0.5-x	- y	0.5+z
b	0.5-x	-y	-0.5+z
с	x	y	-1.0+z
d	0.5+x	0.5 - y	-z
е	$1 \cdot 0 + x$	У	Z
ſ	-0.5+x	0.5-y	-z
g	$1 \cdot 5 - x$	-y	0.5+z
ĥ	$1 \cdot 5 - x$	- y	-0.5+z
i	$1 \cdot 5 + x$	0.5-y	— <i>z</i>

chemistry than the other. The environment of the disorder atom sites is given in Table 7. O(1) has two oxygen atoms, O(3) and O(5), at the distances of 2.815 and 3.121 Å respectively. A hydrogen atom was located along the line of $O(1) \cdots O(3)$, so presumably this is the hydrogen bond and the other distance is a nonbonded $O \cdots O$ contact. O(1') has similar environment with O(3) and O(4) at the distances of 2.919 and 2.937 Å respectively. Owing to the lower occupancy factor of O(1'), the attached hydrogen atom was not located from the difference synthesis, but both $O \cdots O$ distances and their angles with C(1)-O(1') bond are consistent with the formation of one weak hydrogen bond or a bifurcated bond. We suggest with caution therefore, that the occupancy factors represent the probability of two alternate positions for the primary hydroxyl group, which correspond to the hydrogenbonding situations of nearly but not exactly equal contribution to the lattice energy.

The bond distances involving the disordered atom, C(1)-O(1), C(1)-O(1'), appear abnormally short. This is likely to be caused by two effects which cannot be distinguished; (i) the statistical overlap of the electron density of the oxygen O(1), O(1') with the two hydrogen atoms attached to C(1) in the two disordered positions (Fig. 4, top), and (ii) a correlation of thermal displacements between C(1) and O(1), O(1'), (Fig. 4, bottom), which has similar effect to the antiparallel displacement of thermal motion, as described by Busing & Levy (1964). The larger than normal valence angles involving the disordered atoms and the eccentricity of the thermal ellipsoid of C(1) are also likely to be artifacts resulting from the superimposed electron density distributions.

This research has been supported by the U.S. Public Health Service, National Institutes of Health, through grant no. GM-11293.

We are very grateful to Professor G.A. Jeffrey for his encouragement and valuable suggestions throughout this work. We would also like to thank Dr P.W.R. Corfield for his help in using his computer programs.

References

BERTRAND, G. (1898). C. r. Acad. Sci., Paris, 126, 762.

 BROWN, G. M. & LEVY, H. A. (1963). Science, 141, 921.
BROWN, G. M. & LEVY, H. A. (1965). Science, 147, 1038 and private communication.

Fig. 4. (top) The statistical overlapping of the electron densities of oxygen and hydrogen atoms. (bottom) The correlation of thermal displacements between C(1) and O(1) ,O(1'). Fractional numbers are occupancies of atoms.

- BUERGER, M. J. (1959). Vector Space. New York: John Wiley.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Fortran Crystallographic Least Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- CORFIELD, P. W. R. (1965). IBM 1620 Programs for the Solution of the Patterson Function by Superposition Methods. Technical Report, Crystallography Laboratory, University of Pittsburgh, Pa.
- Cox, E. G., GOODWIN, T. H. & WAGSTAFF, A. I. (1935). J. Chem. Soc. p.980.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Edit. Pepinsky et al., New York: Pergamon Press.
- FERRIER, W. G. (1963). Acta Cryst. 16, 1023.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- HORDVIK, A. (1961). Acta Chem. Scand. 15, 16.
- HUDSON, C. S. (1925). J. Amer. Chem. Soc. 47, 268.
- JEFFREY, G. A. & ROSENSTEIN, R. D. (1964). Advanc. Carbohydrate Chem. 19, 7.
- KIM, S. H. & JEFFREY, G. A. (1967). To be published.
- NEELY, G. D. (1957). Advanc. Carbohydrate Chem. 12, 13.
- SHIONO, R. (1966a). Data Reduction and Scaling Fortran Program. Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pa.
- SHIONO, R. (1966b) Oak Ridge Least Squares Program Modified for the Crystallography Laboratory of the University of Pittsburgh, Pittsburgh, Pa.
- SPEDDING, H. (1964). Advanc. Carbohydrate Chem. 19, 23.
- Wells, P. A., STUBBS, J. J., LOCKWOOD, L. B. & ROE, E. T. (1937). Ind. Engng Chem. 29, 1385.